SlideShare uma empresa Scribd logo
2
Mais lidos
4
Mais lidos
6
Mais lidos
REUNIÃO DE CONJUNTOS
   Dados dois conjuntos A e B, chama-se reunião ou união de A e B o conjunto formado
pelos elementos que pertencem a A ou a B.
                                    A ∪ B = {x | x ∈ A ou x ∈ B}
   O conjunto A ∪ B (lê-se “A reunião B” ou “A união B”) é formado pelos elementos que
pertencem a pelo menos um dos conjuntos A e B.
   Notemos que x é elemento de A ∪ B se ocorrer ao menos uma das condições seguintes:
                                             x ∈ A ou x ∈ B
EXEMPLOS:
1) {a, b} ∪ {c, d} = {a, b, c, d}
2) {a, b} ∪ {a, b, c, d} = {a, b, c, d}
3) {a, b, c} ∪ {c, d, e} = {a, b, c, d, e}
4) {a, b, c} ∪ ∅ = {a, b, c}
5) ∅ ∪ ∅ = ∅




   Propriedades da reunião
   Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:
   • A ∪ A = A (idempotente)
   • A ∪ ∅ = A (elemento neutro)
   • A ∪ B = B ∪ A (comutativa)
   • (A ∪ B) ∪ C = A ∪ (B ∪ C) (associativa)
INTERSEÇÃO DE CONJUNTOS
   Dados dois conjuntos A e B, chama-se interseção de A e B o conjunto formado pelos
elementos que pertencem a A e a B.
                                      A ∩ B = {x | x ∈ A e x ∈ B}
   O conjunto A ∩ B (lê-se “A inter B”) é formado pelos elementos que pertencem aos dois
conjuntos (A e B) simultaneamente.
   Se x ∈ A ∩ B, isso significa que x pertence a A e também x pertence a B. O conectivo e
colocado entre duas condições significa que elas devem ser obedecidas ao mesmo tempo.
EXEMPLOS:
• {a, b, c} ∩ {b, c, d, e} = {b, c}
• {a, b} ∩ {a, b, c, d} = {a, b}
• {a, b, c} ∩ {a, b, c} = {a, b, c}
• {a, b} ∩ {c, d} = ∅
• {a, b} ∩ ∅ = ∅




   Propriedades da interseção
   Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:
   • A ∩ A = A (idempotente)
   • A ∩ U = A (elemento neutro)
   • A ∩ B = B ∩ A (comutativa)
   • (A ∩ B) ∩ C = A ∩ (B ∪ C) (associativa)


   Conjuntos Disjuntos
   Quando A ∩ B = ∅, isto é, quando os conjuntos A e B não têm elemento comum, A e B
são denominados conjuntos disjuntos.
Propriedades
    Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades, que inter-
relacionam a reunião e a interseção de conjuntos:
   • A ∪ (A ∩ B) = A
   • A ∩ (A ∪ B) = A
   • A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
   • A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)


                                            EXERCÍCIOS
1. Dados os conjuntos A = {a, b, c}, B = {c, d} e C = {c, e}, determine A ∪ B, A ∪ C, B ∪ C
   e A ∪ B ∪ C.
   A ∪ B = {a, b, c, d}             B ∪ C = {c, d, e}
   A ∪ C = {a, b, c, e}             A ∪ B ∪ C = {a, b, c, d, e}


2. Classifique em V ou F:
   a) ∅ ⊂ (A ∪ B)               V
   b) (A ∪ B) ⊂ A               F
   c) A ⊃ (A ∪ B)               F
   d) (A ∪ B) ⊂ (A ∪ B ∪ C)     V
   e) (A ∪ B) ⊂ (A ∪ B)         V
   f) B ⊂ (A ∪ B)               V
   Admitindo que A, B e C são conjuntos quaisquer.


3. Dados os conjuntos A={a, b, c, d}, B={b, c, d, e} e C = {c, e, f}, descreva A ∩ B, A ∩ C,
   B ∩ C e A ∩ B ∩ C.
   A ∩ B = {b, c, d}          A ∩ C = {c}        B ∩ C = {c, e}        A ∩ B ∩ C = {c}


4. Classifique em V ou F:
   a) ∅ ⊂ (A ∩ B)               V
   b) A ⊂ (A ∩ B)               F
   c) A ∈ (A ∩ B)               F
   d) (A ∩ B) ⊃ (A ∩ B ∩ C) V
   e) (A ∩ B) ⊂ (A ∩ B)         V
   f) (A ∩ B) ⊂ B               V
   Admitindo que A, B e C são conjuntos quaisquer
5. Dados os conjuntos A = {1, 2, 3}, B = {3, 4} e C = {1, 2, 4}, determine o conjunto X tal
   que X ∪ B = A ∪ C e X ∩ B = ∅. X= {1, 2}


6. Determine o conjunto X tal que:
   • {a, b, c, d} ∪ X = {a, b, c, d, e}
   • {c, d} ∪ X = {a, c, d, e}
   • {b, c, d} ∩ X = {c}
      X = {a, c, e}


7. Sabe-se que
   • A ∪ B ∪ C = {n ∈ ℕ| 1 ≤ n ≤ 10}
   • A ∩ B={2, 3, 8}
   • A ∩ C = {2, 7}
   • B ∩ C = {2, 5, 6}
   • A ∪ B = {n ∈ ℕ| 1 ≤ n ≤ 8}.
   Determine C.
   C = { 2, 5, 6, 7, 9, 10}


8. Determine o número de conjuntos X que satisfazem a relação
                                    {1, 2} ⊂ X ⊂ {1, 2, 3, 4}
                                          4 conjuntos


9. Assinale no diagrama abaixo, um de cada vez, os seguintes conjuntos:
10. Sejam os conjuntos A com 2 elementos, B com 3 elementos, C com 4 elementos. Qual é
   o número máximo de elementos de (A ∩ B) ∩ C? 2 elementos


DIFERENÇA DE CONJUNTOS
   Dados dois conjuntos A e B, chama-se diferença entre A e B o conjunto formado pelos
elementos de A que não pertencem a B.
                                    A - B = {x | x ∈ A e x ∉ B}
EXEMPLOS:
1) {a, b, c} - {b, c, d, e} = {a}
2) {a, b, c} - {b, c} = {a}
3) {a, b} - {c, d, e, f} = {a, b}
4) {a, b} - {a, b, c, d, e} = ∅




V   COMPLEMENTAR DE B EM A
   Dados dois conjuntos A e B, tais que B ⊂ A, chama-se complementar de B em relação a
A o conjunto A – B, isto é, o conjunto dos elementos de A que não pertencem a B.




  Utilizamos a notação    quando queremos determinar o complementar de A em relação a
um conjunto universo U. Logo:
EXEMPLOS:
1) Se A = {a, b, c, d, e} e B = {c, d, e}, então   = {a, b}
2) Se A = {a, b, c, d} = B, então      =∅
3) Se A = {a, b, c, d} e B = ∅, então       = {a, b, c, d} = A


  Propriedades
      Sendo B e C subconjuntos de A, valem as seguintes propriedades:




                                           EXERCÍCIOS
11. Sejam os conjuntos A = {a, b, c, d}, B = {c, d, e, f, g} e C = {b, d, e, g}. Determine:
   a) A – B {a, b}                      d) (A ∪ C) – B           {a, b}
   b) B – A {e, f, g}                   e) A – (B ∩ C)           {a, b, c}
   c) C – B {b}                         f) (A ∪ B) – (A ∩ C)     {f}


12. Classifique em V ou F as sentenças:
   a) (A – B) ⊃ ∅                V
   b) (A – B) ∪ (A ∩ B) = A      V
   c) (A – B) ⊂ B                F
   d) (A – B) ⊂ (A ∪ B)          V
      Admitindo que A e B são conjuntos quaisquer.


13. Dados os conjuntos A = {1, 2, 3, 4, 5}, B = {1, 2, 4, 6, 8} e C = {2, 4, 5, 7}, obtenha um
   conjunto X tal que X ⊂ A e A – X = B ∩ C.
      X = {1, 3, 5}


14.      Assinale no diagrama ao lado, um de cada vez, os seguintes conjuntos:
15.   Classifique em V ou F as seguintes sentenças:




16.



17.   Descreva os elementos dos conjuntos abaixo:




18. Seja E = {a, {a}}. Diga quais das proposições abaixo são verdadeiras.




19. Dados A e B conjuntos tais que n(A) = 4, n(B) = 5 e n(A ∩ B) = 3, determine o número
   de subconjuntos de A ∪ B. 64 subconjuntos


20. Se A = {3n| n ∈ ℕ} e B = {n ∈ ℕ| n é divisor de 120}, qual é o número de elementos de
   A ∩ B? 8 elementos
21. Em uma escola que tem 415 alunos, 221 estudam inglês, 163 estudam francês e 52
   estudam ambas as línguas. Quantos alunos estudam inglês ou francês? Quantos alunos
   não estudam nenhuma das duas? 332 alunos / 83 alunos


22. Uma população consome três marcas de sabão em pó: A, B e C. Feita uma pesquisa de
   mercado, colheram-se os resultados tabelados abaixo:




   Forneça:
   a) O número de pessoas consultadas;                             500 pessoas

   b) O número de pessoas que só consomem a marca A;               61 pessoas

   c) O número de pessoas que não consomem as marcas A ou C;       257 pessoas

   d) O número de pessoas que consomem ao menos duas marcas.       84 pessoas


23. Em certa comunidade há indivíduos de três raças: branca, preta e amarela. Sabendo que
   70 são brancos, 350 são não pretos e 50% são amarelos, responda:
   a) Quantos indivíduos têm a comunidade?       560 indivíduos

   b) Quantos são os indivíduos amarelos?        280 indivíduos

24. De todos os empregados de uma firma, 30% optaram por um plano de assistência
   médica. A firma tem a matriz na capital e somente duas filiais, uma em Santos e outra em
   Campinas. 45% dos empregados trabalham na matriz e 20% dos empregados trabalham
   na filial de Santos. Sabendo que 20% dos empregados da capital optaram pelo plano de
   assistência médica e que 35% dos empregados da filial de Santos o fizeram, qual a
   porcentagem dos empregados da filial de Campinas que optaram pelo plano? 40% dos
   empregados
25. Determine os conjuntos A, B e C que satisfazem as seguintes seis condições:

Mais conteúdo relacionado

Mais procurados (20)

PDF
Formulas geral para geometria analitica
Elieser Júnio
 
PPT
Matemática conjuntos
Milton Sgambatti Júnior
 
PDF
TEORIA DE CONJUNTOS
Luciano Pessanha
 
PPT
Funcao modular
con_seguir
 
PDF
Conjuntos
rosania39
 
PDF
Teoria de conjuntos fichas de exercícios
wilkerfilipel
 
DOC
Funcões Injetora, Sobrejetora e Bijetora
Cleiton Cunha
 
PPTX
Plano cartesiano animado
Edigley Alexandre
 
PPTX
Geometria Espacial para ENEM
Aryleudo De Oliveira
 
PPT
Potenciação
andreapmnobre
 
DOC
Lista Circulo Circunferencia
tioheraclito
 
PPT
17 aula intervalos reais
jatobaesem
 
PPT
Análise combinatória
betencourt
 
PDF
Conjuntos numéricos - 7 ano
Otávio Sales
 
PDF
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
Vyeyra Santos
 
PPT
Logaritmo
Antonio Carneiro
 
PPTX
Função logarítmica
NathalyNara
 
PDF
Conjuntos e Intervalos
Song Hyo Scremin
 
DOCX
Recuperação lista exercicios 7º ano 1º bimestre
Rafael Marques
 
Formulas geral para geometria analitica
Elieser Júnio
 
Matemática conjuntos
Milton Sgambatti Júnior
 
TEORIA DE CONJUNTOS
Luciano Pessanha
 
Funcao modular
con_seguir
 
Conjuntos
rosania39
 
Teoria de conjuntos fichas de exercícios
wilkerfilipel
 
Funcões Injetora, Sobrejetora e Bijetora
Cleiton Cunha
 
Plano cartesiano animado
Edigley Alexandre
 
Geometria Espacial para ENEM
Aryleudo De Oliveira
 
Potenciação
andreapmnobre
 
Lista Circulo Circunferencia
tioheraclito
 
17 aula intervalos reais
jatobaesem
 
Análise combinatória
betencourt
 
Conjuntos numéricos - 7 ano
Otávio Sales
 
AVALIAÇÃO DE MATEMATICA 1 ANO CONJUNTOS
Vyeyra Santos
 
Logaritmo
Antonio Carneiro
 
Função logarítmica
NathalyNara
 
Conjuntos e Intervalos
Song Hyo Scremin
 
Recuperação lista exercicios 7º ano 1º bimestre
Rafael Marques
 

Destaque (20)

PDF
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
Criativa Niterói
 
PDF
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5
Alexander Mayer
 
PPTX
Teoria dos conjuntos 1º ANO - Ensino Médio
Rosana Santos Quirino
 
PDF
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA1
Alexander Mayer
 
DOC
Lista de exercícios conjuntos
tiagoz26
 
PDF
Exercícios resolvidos de conjuntos
Junior Magalhães
 
DOCX
Exercícios resolvidos sobre conjuntos numéricos e diagramas
movimento fitness
 
PDF
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2
Alexander Mayer
 
PDF
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4
Alexander Mayer
 
DOC
Diagrama de venn autocolante
Raul Filipe Correia
 
PDF
Prova[1]
Professor Serginho
 
PDF
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
Alexander Mayer
 
PDF
MATEMÁTICA - TEORIA DOS CONJUNTOS - AULA 1
Alexander Mayer
 
PDF
Aula 01 matriz
Professor Serginho
 
PDF
Resumo conjuntos pdf
cristianomatematico
 
PDF
Exercícios: noções de conjuntos e conjuntos numéricos
thieresaulas
 
PDF
Lista de exercícios - conjuntos - 6º ano
Anderson C. Rosa
 
PPT
Conjuntos numéricos
andreilson18
 
PDF
Teoria dos Conjuntos
Luciano Pessanha
 
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
Criativa Niterói
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 5
Alexander Mayer
 
Teoria dos conjuntos 1º ANO - Ensino Médio
Rosana Santos Quirino
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA1
Alexander Mayer
 
Lista de exercícios conjuntos
tiagoz26
 
Exercícios resolvidos de conjuntos
Junior Magalhães
 
Exercícios resolvidos sobre conjuntos numéricos e diagramas
movimento fitness
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 2
Alexander Mayer
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 4
Alexander Mayer
 
Diagrama de venn autocolante
Raul Filipe Correia
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
Alexander Mayer
 
MATEMÁTICA - TEORIA DOS CONJUNTOS - AULA 1
Alexander Mayer
 
Aula 01 matriz
Professor Serginho
 
Resumo conjuntos pdf
cristianomatematico
 
Exercícios: noções de conjuntos e conjuntos numéricos
thieresaulas
 
Lista de exercícios - conjuntos - 6º ano
Anderson C. Rosa
 
Conjuntos numéricos
andreilson18
 
Teoria dos Conjuntos
Luciano Pessanha
 
Anúncio

Semelhante a Aula 02 conjuntos (20)

PPTX
Matemática para Concursos - Teoria dos Conjuntos
Instituto Walter Alencar
 
PPTX
001+-+TEORIA+DOS+CONJUNTOS.pptx
Taline Justino
 
PDF
conjuntos.pdf
CarlosCarrapio3
 
DOCX
Teoria dos Conjuntos
Ronoaldo Cavalcante
 
DOCX
Conjuntos
Mônica Almeida
 
PDF
Exercícios da 1ª série do ensino médio
iraciva
 
PDF
Matematica discreta
gabaritocontabil
 
PDF
Ex conj nuno
Adriana Morgado
 
DOC
Conjuntos apostila i
Suselaine Da Fonseca Silva
 
PPTX
Uma aula sobre a teoria de conjuntos em geral
LucasdeCarvalhoNasci
 
PDF
3º ano
proffelipemat
 
DOCX
Exercicios resolvidos (1)
Gledson Villarta
 
PDF
A1 me
Carlos Almeida
 
PDF
Teoria dos conjuntos noções elementares.pdf
IrmoJeric
 
DOCX
Lista de exercícios g
jackpage
 
PDF
Matematica exercicios conjuntos
littlevic4
 
DOC
Wania regia 5º aula
Wania Regia Borges Gogia
 
DOC
Aula 5 - Conjuntos
SoterO o/
 
PDF
Banco de exercícios gerais de matematica todo em
Elias Silveira de Albuquerque
 
PDF
Aula 1 conjuntos
Roberto Villardo
 
Matemática para Concursos - Teoria dos Conjuntos
Instituto Walter Alencar
 
001+-+TEORIA+DOS+CONJUNTOS.pptx
Taline Justino
 
conjuntos.pdf
CarlosCarrapio3
 
Teoria dos Conjuntos
Ronoaldo Cavalcante
 
Conjuntos
Mônica Almeida
 
Exercícios da 1ª série do ensino médio
iraciva
 
Matematica discreta
gabaritocontabil
 
Ex conj nuno
Adriana Morgado
 
Conjuntos apostila i
Suselaine Da Fonseca Silva
 
Uma aula sobre a teoria de conjuntos em geral
LucasdeCarvalhoNasci
 
3º ano
proffelipemat
 
Exercicios resolvidos (1)
Gledson Villarta
 
Teoria dos conjuntos noções elementares.pdf
IrmoJeric
 
Lista de exercícios g
jackpage
 
Matematica exercicios conjuntos
littlevic4
 
Wania regia 5º aula
Wania Regia Borges Gogia
 
Aula 5 - Conjuntos
SoterO o/
 
Banco de exercícios gerais de matematica todo em
Elias Silveira de Albuquerque
 
Aula 1 conjuntos
Roberto Villardo
 
Anúncio

Mais de Professor Serginho (10)

PDF
Questões de vestibular
Professor Serginho
 
PDF
Questões de vestibular
Professor Serginho
 
PDF
Prova[1]
Professor Serginho
 
PDF
Prova3proseloficial2011[1]
Professor Serginho
 
PDF
Pontodecorte2011[1]
Professor Serginho
 
PDF
Prova ps 2011_2[1]
Professor Serginho
 
PDF
Prova ps 2011_1[1]
Professor Serginho
 
PDF
Exercícios Extras
Professor Serginho
 
PDF
Aula 01 análise combinatória
Professor Serginho
 
PDF
Exercícios extras
Professor Serginho
 
Questões de vestibular
Professor Serginho
 
Questões de vestibular
Professor Serginho
 
Prova3proseloficial2011[1]
Professor Serginho
 
Pontodecorte2011[1]
Professor Serginho
 
Prova ps 2011_2[1]
Professor Serginho
 
Prova ps 2011_1[1]
Professor Serginho
 
Exercícios Extras
Professor Serginho
 
Aula 01 análise combinatória
Professor Serginho
 
Exercícios extras
Professor Serginho
 

Aula 02 conjuntos

  • 1. REUNIÃO DE CONJUNTOS Dados dois conjuntos A e B, chama-se reunião ou união de A e B o conjunto formado pelos elementos que pertencem a A ou a B. A ∪ B = {x | x ∈ A ou x ∈ B} O conjunto A ∪ B (lê-se “A reunião B” ou “A união B”) é formado pelos elementos que pertencem a pelo menos um dos conjuntos A e B. Notemos que x é elemento de A ∪ B se ocorrer ao menos uma das condições seguintes: x ∈ A ou x ∈ B EXEMPLOS: 1) {a, b} ∪ {c, d} = {a, b, c, d} 2) {a, b} ∪ {a, b, c, d} = {a, b, c, d} 3) {a, b, c} ∪ {c, d, e} = {a, b, c, d, e} 4) {a, b, c} ∪ ∅ = {a, b, c} 5) ∅ ∪ ∅ = ∅ Propriedades da reunião Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades: • A ∪ A = A (idempotente) • A ∪ ∅ = A (elemento neutro) • A ∪ B = B ∪ A (comutativa) • (A ∪ B) ∪ C = A ∪ (B ∪ C) (associativa)
  • 2. INTERSEÇÃO DE CONJUNTOS Dados dois conjuntos A e B, chama-se interseção de A e B o conjunto formado pelos elementos que pertencem a A e a B. A ∩ B = {x | x ∈ A e x ∈ B} O conjunto A ∩ B (lê-se “A inter B”) é formado pelos elementos que pertencem aos dois conjuntos (A e B) simultaneamente. Se x ∈ A ∩ B, isso significa que x pertence a A e também x pertence a B. O conectivo e colocado entre duas condições significa que elas devem ser obedecidas ao mesmo tempo. EXEMPLOS: • {a, b, c} ∩ {b, c, d, e} = {b, c} • {a, b} ∩ {a, b, c, d} = {a, b} • {a, b, c} ∩ {a, b, c} = {a, b, c} • {a, b} ∩ {c, d} = ∅ • {a, b} ∩ ∅ = ∅ Propriedades da interseção Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades: • A ∩ A = A (idempotente) • A ∩ U = A (elemento neutro) • A ∩ B = B ∩ A (comutativa) • (A ∩ B) ∩ C = A ∩ (B ∪ C) (associativa) Conjuntos Disjuntos Quando A ∩ B = ∅, isto é, quando os conjuntos A e B não têm elemento comum, A e B são denominados conjuntos disjuntos.
  • 3. Propriedades Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades, que inter- relacionam a reunião e a interseção de conjuntos: • A ∪ (A ∩ B) = A • A ∩ (A ∪ B) = A • A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) • A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) EXERCÍCIOS 1. Dados os conjuntos A = {a, b, c}, B = {c, d} e C = {c, e}, determine A ∪ B, A ∪ C, B ∪ C e A ∪ B ∪ C. A ∪ B = {a, b, c, d} B ∪ C = {c, d, e} A ∪ C = {a, b, c, e} A ∪ B ∪ C = {a, b, c, d, e} 2. Classifique em V ou F: a) ∅ ⊂ (A ∪ B) V b) (A ∪ B) ⊂ A F c) A ⊃ (A ∪ B) F d) (A ∪ B) ⊂ (A ∪ B ∪ C) V e) (A ∪ B) ⊂ (A ∪ B) V f) B ⊂ (A ∪ B) V Admitindo que A, B e C são conjuntos quaisquer. 3. Dados os conjuntos A={a, b, c, d}, B={b, c, d, e} e C = {c, e, f}, descreva A ∩ B, A ∩ C, B ∩ C e A ∩ B ∩ C. A ∩ B = {b, c, d} A ∩ C = {c} B ∩ C = {c, e} A ∩ B ∩ C = {c} 4. Classifique em V ou F: a) ∅ ⊂ (A ∩ B) V b) A ⊂ (A ∩ B) F c) A ∈ (A ∩ B) F d) (A ∩ B) ⊃ (A ∩ B ∩ C) V e) (A ∩ B) ⊂ (A ∩ B) V f) (A ∩ B) ⊂ B V Admitindo que A, B e C são conjuntos quaisquer
  • 4. 5. Dados os conjuntos A = {1, 2, 3}, B = {3, 4} e C = {1, 2, 4}, determine o conjunto X tal que X ∪ B = A ∪ C e X ∩ B = ∅. X= {1, 2} 6. Determine o conjunto X tal que: • {a, b, c, d} ∪ X = {a, b, c, d, e} • {c, d} ∪ X = {a, c, d, e} • {b, c, d} ∩ X = {c} X = {a, c, e} 7. Sabe-se que • A ∪ B ∪ C = {n ∈ ℕ| 1 ≤ n ≤ 10} • A ∩ B={2, 3, 8} • A ∩ C = {2, 7} • B ∩ C = {2, 5, 6} • A ∪ B = {n ∈ ℕ| 1 ≤ n ≤ 8}. Determine C. C = { 2, 5, 6, 7, 9, 10} 8. Determine o número de conjuntos X que satisfazem a relação {1, 2} ⊂ X ⊂ {1, 2, 3, 4} 4 conjuntos 9. Assinale no diagrama abaixo, um de cada vez, os seguintes conjuntos:
  • 5. 10. Sejam os conjuntos A com 2 elementos, B com 3 elementos, C com 4 elementos. Qual é o número máximo de elementos de (A ∩ B) ∩ C? 2 elementos DIFERENÇA DE CONJUNTOS Dados dois conjuntos A e B, chama-se diferença entre A e B o conjunto formado pelos elementos de A que não pertencem a B. A - B = {x | x ∈ A e x ∉ B} EXEMPLOS: 1) {a, b, c} - {b, c, d, e} = {a} 2) {a, b, c} - {b, c} = {a} 3) {a, b} - {c, d, e, f} = {a, b} 4) {a, b} - {a, b, c, d, e} = ∅ V COMPLEMENTAR DE B EM A Dados dois conjuntos A e B, tais que B ⊂ A, chama-se complementar de B em relação a A o conjunto A – B, isto é, o conjunto dos elementos de A que não pertencem a B. Utilizamos a notação quando queremos determinar o complementar de A em relação a um conjunto universo U. Logo:
  • 6. EXEMPLOS: 1) Se A = {a, b, c, d, e} e B = {c, d, e}, então = {a, b} 2) Se A = {a, b, c, d} = B, então =∅ 3) Se A = {a, b, c, d} e B = ∅, então = {a, b, c, d} = A Propriedades Sendo B e C subconjuntos de A, valem as seguintes propriedades: EXERCÍCIOS 11. Sejam os conjuntos A = {a, b, c, d}, B = {c, d, e, f, g} e C = {b, d, e, g}. Determine: a) A – B {a, b} d) (A ∪ C) – B {a, b} b) B – A {e, f, g} e) A – (B ∩ C) {a, b, c} c) C – B {b} f) (A ∪ B) – (A ∩ C) {f} 12. Classifique em V ou F as sentenças: a) (A – B) ⊃ ∅ V b) (A – B) ∪ (A ∩ B) = A V c) (A – B) ⊂ B F d) (A – B) ⊂ (A ∪ B) V Admitindo que A e B são conjuntos quaisquer. 13. Dados os conjuntos A = {1, 2, 3, 4, 5}, B = {1, 2, 4, 6, 8} e C = {2, 4, 5, 7}, obtenha um conjunto X tal que X ⊂ A e A – X = B ∩ C. X = {1, 3, 5} 14. Assinale no diagrama ao lado, um de cada vez, os seguintes conjuntos:
  • 7. 15. Classifique em V ou F as seguintes sentenças: 16. 17. Descreva os elementos dos conjuntos abaixo: 18. Seja E = {a, {a}}. Diga quais das proposições abaixo são verdadeiras. 19. Dados A e B conjuntos tais que n(A) = 4, n(B) = 5 e n(A ∩ B) = 3, determine o número de subconjuntos de A ∪ B. 64 subconjuntos 20. Se A = {3n| n ∈ ℕ} e B = {n ∈ ℕ| n é divisor de 120}, qual é o número de elementos de A ∩ B? 8 elementos
  • 8. 21. Em uma escola que tem 415 alunos, 221 estudam inglês, 163 estudam francês e 52 estudam ambas as línguas. Quantos alunos estudam inglês ou francês? Quantos alunos não estudam nenhuma das duas? 332 alunos / 83 alunos 22. Uma população consome três marcas de sabão em pó: A, B e C. Feita uma pesquisa de mercado, colheram-se os resultados tabelados abaixo: Forneça: a) O número de pessoas consultadas; 500 pessoas b) O número de pessoas que só consomem a marca A; 61 pessoas c) O número de pessoas que não consomem as marcas A ou C; 257 pessoas d) O número de pessoas que consomem ao menos duas marcas. 84 pessoas 23. Em certa comunidade há indivíduos de três raças: branca, preta e amarela. Sabendo que 70 são brancos, 350 são não pretos e 50% são amarelos, responda: a) Quantos indivíduos têm a comunidade? 560 indivíduos b) Quantos são os indivíduos amarelos? 280 indivíduos 24. De todos os empregados de uma firma, 30% optaram por um plano de assistência médica. A firma tem a matriz na capital e somente duas filiais, uma em Santos e outra em Campinas. 45% dos empregados trabalham na matriz e 20% dos empregados trabalham na filial de Santos. Sabendo que 20% dos empregados da capital optaram pelo plano de assistência médica e que 35% dos empregados da filial de Santos o fizeram, qual a porcentagem dos empregados da filial de Campinas que optaram pelo plano? 40% dos empregados
  • 9. 25. Determine os conjuntos A, B e C que satisfazem as seguintes seis condições: